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ABSTRACT: Bayesian tools for inverse modeling are based on asymptotic approximations and Stochastic
Simulation Algorithms (SSA). Such tools require a number of moderate to large number of system re-analyses.
For large-order numerical models of engineering systems, the computational requirements in Bayesian tools can
be excessive. Using the Transitional MCMC algorithm, this study proposes efficient techniques for reducing the
computational demands to manageable levels. Adaptive surrogate models are used to reduce the number of full
system runs by an order of magnitude and parallel computing algorithms are employed to efficiently distribute
the Transitional MCMC computations in multi-core CPUs. Applications in structural dynamics are emphasized
in this work. Recently developed fast and accurate component mode synthesis techniques, consistent with the
finite element parameterization, are implemented to achieve drastic reductions in the system order, resulting in
additional substantial computational savings. An example of a bridge model with hundred of thousand of degrees
of freedom demonstrates the capabilities of the proposed framework and the remarkable computational savings
that can be achieved.

1 INTRODUCTION

Bayesian inference is used for quantifying uncer-
tainty and calibrating models of engineering systems
based on measurements. It is also used for prop-
agating the modeling uncertainties in simulations
of the system behavior for updated robust predic-
tions of system performance, reliability and safety
(Papadimitriou et al. 2001). The Bayesian tools consist
of Laplace methods of asymptotic approximation and
more accurate stochastic simulation algorithms such
as Markov Chain Monte Carlo (MCMC) (Metropolis
et al. 1953), Transitional MCMC (Ching and Chen
2007) and Delayed Rejection Adaptive Metropolis
(DRAM) (Haario et al. 2006).

For large number of measurements, the Bayesian
central limit theorem is used to approximate the poste-
rior distribution of the model parameters by a Gaussian
distribution centered at the most probable value of the
model parameters with covariance equal to the inverse
of the Hessian of minus the logarithm of the posterior
distribution evaluated at the most probable value. This
approximation involves solving an optimization prob-
lem as well as computing the Hessian of a function that
depends on the quantities of interest evaluated through

model simulations. Gradient-based optimization algo-
rithms can be used with first-order adjoint methods to
efficiently compute the most probable value. Second-
order adjoint methods can then be used to compute
the Hessian involved in the Gaussian distribution. An
example of the application of first and second-order
adjoint in structural dynamics can be found in the work
by Ntotsios and Papadimitriou (2008). However, prob-
lems may arise when the gradient-based algorithms
converge to local optima. Also, for some models of
physical systems it is not possible to formulate an
adjoint problem. In such cases stochastic methods,
such as CMA (Hansen et al. 2003) can be used to
estimate the global optima in the expense of more
computational effort due to significantly more sys-
tem re-analyses required. Once the optimum has been
determined, the Hessian can be obtained either numer-
ically or by using efficient methods (e.g. Lyness and
Moler 1969).

The asymptotic estimate in Bayesian inverse model-
ing is approximate. Moreover, even for large number
of data, it may fail to give a good representation of
the posterior probability distribution in the case of
multimodal distributions. In addition, the asymptotic
approximation fails to provide acceptable estimates
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for un-identifiable cases manifested for relatively
large number of model parameters in relation to the
information contained in the data.

For more accurate estimates, one should use
stochastic simulation algorithms (SSA) to generate
samples that populate the posterior distribution and
then evaluate robust prediction integrals using sam-
ple estimates. Among the stochastic simulation algo-
rithms available, the transitional MCMC algorithm
(Ching and Chen 2007) is one of the most promis-
ing algorithms for selecting the most probable model
as well as finding and populating with samples the
importance region of interest of the posterior proba-
bility distribution, even in the unidentifiable cases and
multi-modal posterior distributions. In addition, the
TMCMC method yields an estimate of the evidence of
the model class based on the samples generated by the
algorithm.

SSA tools involve generating samples for tracing
and then populating the important uncertainty region
in the parameter space, as well as evaluating integrals
over high-dimensional spaces of the uncertain model
parameters. They usually require a very large number
of system re-analyses to be performed over the space
of uncertain parameters. Consequently, the computa-
tional demands depend highly on the number of system
analyses and the time required for performing a system
analysis. For models involving hundreds of thousands
or even million degrees of freedom and localized non-
linear actions activated during system operation, the
computational demands may be excessive.The present
work proposes methods for drastically reducing the
computational demands at the system, algorithm and
hardware levels involved in the implementation of
Bayesian tools.

Surrogate models and high performance computing
techniques are integrated (Angelikopoulos et al. 2012)
in Bayesian inverse techniques to efficiently handle
the excessive computational cost associated with large
number of re-analyses of large-order, industrial size,
computational models of hundreds of thousands or
millions degrees of freedom encountered in practi-
cal applications. Parallel computing algorithms can be
used to efficiently distribute the computations in avail-
able multi-core CPUs in clusters with heterogeneous
architectures.

Application of the proposed computational frame-
work to model calibration and robust response updat-
ing in structural dynamics is emphasized. Efficient
fast and accurate component mode synthesis (CMS)
techniques, consistent with the finite element (FE)
model parameterization, are also implemented to
achieve drastic reductions in the system order, result-
ing in additional substantial computational savings
(Papadimitriou and Papadioti 2013). Large-order lin-
ear computational models taken from civil engineering
applications demonstrate that remarkable reductions
in computational effort can be achieved, allowing
the excessive computations in Bayesian inverse tech-
niques for large-order computational models to be
reduced to manageable levels.

2 BAYESIAN INVERSE MODELING

2.1 Parameter estimation

Consider a parameterized model class Mm of an actual
engineering system used to predict various output
quantities of interest g(θm|Mm) of the system, where
θm ∈ RNm is a set of parameters in this model class
that need to be estimated using experimental data
D ≡ {ŷr , r = 1, . . . , Nd}.

Following a Bayesian formulation (Beck and
Katafygiotis 1998, Beck 2010,Yuen 2010) and assum-
ing that the observation data and the model predictions
satisfy the prediction error equation

where the error term e ∼ N (0, �) is a zero-mean
Gaussian vector with covariance � = �(θe) depend-
ing on the parameters θe of the prediction error model
class Me, the updated distribution p(θ|D, M) of the
augmented parameter set θ = (θm, θe), given the data D
and the combined model class M = {Mm, Me} , results
from the application of the Bayes theorem as follows

where

is the likelihood of observing the data from the model
class,

is the measure of fit between the experimental and
model predicted properties, π(θ|M) is the prior prob-
ability distribution of the model parameters based
on previous knowledge and/or user experience, and
p(D|M) is the evidence of the model class.

2.2 Robust predictions

Let q be an output quantity of interest for the sys-
tem. Posterior robust predictions of q are obtained
by taking into account the updated uncertainties in
the model parameters given the measurements D. Let
p(q|θ, M) be the conditional probability distribution of
q given the values of the parameters. Using the total
probability theorem, the posterior robust probability
distribution p(q|D, M) of q, taking into account the
model M and the data D, is given by (Papadimitriou
et al. 2001)

as an average of the conditional probability distribu-
tion p(q|θ, M) weighting by the posterior probability
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distribution p(θ|D, M) of the model parameters. Let
G(q) be a function of the output quantity of interest q.
A posterior robust performance measure of the system
given the data D is

Stochastic simulation methods can be conveniently
used to estimate the integral from the samples θ(i),
i = 1, . . . , N , generated from the posterior probability
distribution p(θ|D, M) in (2). In this case, the integrals
(5) and (6) can be approximated by

and

respectively.

3 STOCHASTIC SIMULATION ALGORITHMS

Markov Chain Monte Carlo (MCMC) algorithms are
used to efficiently draw samples from the posterior
distribution. MCMC variants such as Differential Evo-
lution MC (Braak et al. 2006) or Differential Evolution
Random Subsampling MC (DREAM) (Braak et al.
2008) were introduced to improve parallel efficiency.
These methods consist of a population of chains that
interact by exchanging information but at the same
time preserve the MCMC convergence characteris-
tics at the individual chain level. Another MCMC
method which can be categorized in the framework
of Evolutionary Strategy MCMC methods (Drugan
and Thierens 2010) is the TMCMC (Ching and Chen
2007). This method is a generalization of the method
proposed by Au and Beck (2002) extended by notions
inherent to simulated annealing algorithms.

The TMCMC method has been proposed to address
the problem of choosing the right adaptive proposal
PDF in MCMC methods for accelerating convergence
to the posterior PDF. This can be a serious problem
when the support of the posterior PDF in the param-
eter space has complex geometry, and/or when the
posterior PDF is very peaked and isolated in a small
region in the parameter space. Due to a large num-
ber of independent parallel chains involved, TMCMC
is more efficient in terms of parallel efficiency com-
pared to the DRAM and DREAM algorithms. DRAM
is essentially serial and DREAM based on Differen-
tial Evolution suggests the use of a few independent
parallel chains (Braak et al. 2008) proportional to the
parameter space dimensionality. TMCMC also applies
to multimodal posterior PDFs as it handles efficiently
very peaked or very flat PDFs along certain directions
in the parameter space, as well as it estimates the evi-
dence p(D|M) which can further be used for model
selection.

4 SURROGATE MODELS BASED ON KRIGING

The most time consuming part of the TMCMC algo-
rithm is the repeated evaluation of the likelihood
function, requiring a large number of full model
re-analyses. Surrogate models are used to reduce the
computational time at the level of the TMCMC algo-
rithm. The objective is to avoid the expensive full
model simulation runs at a new sampling point in the
parameters space by exploiting the function evalua-
tions from previous full model runs that are available
at the neighbour (design) points in order to generate
an approximate estimate.

Surrogate models are especially well-suited for use
with the TMCMC algorithm since at each intermedi-
ate stage in the TMCMC algorithm, a large number
of samples that sufficiently cover the supports of the
intermediate posterior PDFs from the current and pre-
vious stages are available to be used as design points
for approximating the likelihood estimate at a new
sample based on a surrogate technique. An adap-
tive surrogate technique can thus be used to exploit
the information from available neighbour samples for
providing an approximate estimate at a new sample.

4.1 Kriging interpolation

The kriging technique Lophaven et al. (2002) is used
to approximate the function evaluation at a sam-
pling point using the function evaluations at neigh-
bour points in the parameter space. Consider m
design/sample points [θ1, . . . , θm] in the parameter
space and let Y = [J (θ1), . . . , J (θm)]T be the avail-
able values of a response function J (θ) at these points.
Using the kriging method, a function J (θ) is approx-
imated at a point θ in the parameter space in the
form

where f T (θ)β is the mean response, f T (θ) = [f (θ1), . . . ,
f (θm)] are user selected basis functions, usually in
polynomial form, β = [β1, . . . , βm]T are regression
coefficients to be estimated from the generalized least
square method, and ε(θ) is a zero mean stochastic
process with covariance E[ε(θi)ε(θj)] = σ2R(φ; θi, θj)
which depends on the variance σ2 and a set of param-
eters ϕ appearing in the structure of the correlation
function R(ϕ; θi, θj) of the stochastic process ε(θ).
A common choice of the correlation function is the
exponential form:

with ϕj ≥ 0, j = 1, . . . , m, and 0 ≤ ϕm+1 ≤ 2. The opti-
mal choice of the parameters β, σ2 and ϕ are the ones
that maximize the likelihood function given the values
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at the design points. This likelihood function is given
in the form

The optimal values of β and σ2 are given by

while the optimal values ϕ̂ of ϕ are obtained by
minimizing the minus the log-likelihood function

The prediction at the point θ in the model parameter
space and its mean square error are given respectively
by [28, 29]

and

where R̂ = R(φ̂), u = FT R−1r − f (θ), F is a matrix
with components Fij = fj(θi), R is the matrix with
components Rij = R(φ; θi, θj).

The estimation of the kriging parameters ϕ̂ involve
solving a potentially high dimensionality mini-
mization problem, occurring due to the choice of
anisotropic correlation lengths assignment. Following
the analysis of Lophaven et al. (2002), the kriging
prediction can quickly deteriorate if the minimization
is not accurate. A bounded pattern-search method is
used in this work. Statistically, the root mean squared
error (RMSE) or the standard deviation s(θ) represents
the predicted deviation of the kriging metamodel from
the actual response. This standard deviation s(θ) will
be used in the paper to accept or reject a surrogate
prediction.

4.2 Adaptive kriging and TMCMC

In general, the accuracy of the surrogate estimates
based on a number of support points depend on
the smoothness of the function to be evaluated on the
region in the parameter space that is covered by the
support points. The smaller the size of this region,
the higher the expected accuracy from the surrogate
estimates. It is thus expected that higher accuracy of
the surrogate estimate at a point in the parameter space

will be achieved by using support points at the neigh-
bor of the surrogate point instead of global support
points that cover the whole region or significant parts
of the region/domain in the parameter space.

A feature of the TMCMC algorithm is that the
MC samples generated from the multiple chains cover
the whole support of the posterior distribution of the
TMCMC stage j. As a result, a new MC sample point
in the parameter space generated from the TMCMC
algorithm is close to neighbor points that could be
used as support points to generate a surrogate estimate
of the function instead of an expensive real estimate.
Each new MC point is then associated with a differ-
ent set of neighbor points, depending of its location
in the parameter space. This surrogate estimate based
on different support points located at the neighbor of
the current surrogate point is an adaptive surrogate
procedure.

To maintain the accuracy of theTMCMC algorithm,
the error s(θ) of the function evaluation due to surro-
gate estimate has to be kept relatively small. If this
is not possible, it is then more suitable to use a full
function evaluation at the surrogate point.

In order to ensure a high quality approximation, a
surrogate estimate at stage j is performed and accepted
if it simultaneously obeys the following heuristic rules:

1. The design points used for interpolation corre-
spond to real full system simulations and not other
surrogate estimates.

2. The surrogate point belongs to the convex hull of the
design points so that an interpolation is performed,
while extrapolations are prohibited.

3. The surrogate estimate is based on a user-defined
minimum number of design points, which are in
the neighbor of the surrogate point. The minimum
number of design points depends on the dimension
of the uncertain parameter space and the order of
the kriging interpolation. To avoid overfitting and
discontinuities that arise from the fact that the sur-
rogate estimates at two neighbour points might be
based on two different sets of design points, the
number of design points is selected to be larger than
the minimum number of points required to perform
the surrogate estimate.

4. The neighbour design points are selected as the ones
closest to the surrogate estimate and also within the
hyper-ellipse of the TMCMC proposal covariance
matrix scaled to include the minimum number of
design points.

5. The kriging approximation maintains its locality,
by choosing the design points as such belonging
to a hyper-surface defined by the scaled proposal
covariance matrix. The scaling factor scales the
neighborhood around the surrogate point up to a
predefined scaling number. A surrogate estimate
is not allowed if the scaling factor exceeds a pre-
specified number so that only local estimates are
accepted.

6. The surrogate estimate is checked whether its pre-
dicted value is within a 95% quintile of all the
design point likelihood values accounted so far.The
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purpose of the threshold is to discourage overshoot-
ing surrogate estimates to get the highest possible
plausibility weights, as this will lead during the next
stage following the re-sampling step in the genera-
tion of a long chain with artificially induced large
rejection rates, quickly decaying sampling quality
and potentially completely destroying the sampling
procedure.

7. The surrogate estimate is accepted if the prediction
error s(θ), given in (16) by the kriging method, is
smaller than a user specified value. The effect of
this value on the accuracy will be demonstrated in
the numerical examples.

At this point it is very important to note the different
possibilities one has in order to do the interpolation.
One can interpolate at either the higher measure of fit
level or at the lower model simulation level. At the
measure of fit level, the interpolations are performed
for the measure of fit function J (θ; M) in (4) or even
the likelihood function level in (3). At the model sim-
ulation level, the interpolations are performed for the
functions g(θm|Mm), which may include various output
quantities of interest.

5 TMCMC PARALLEL IMPLEMENTATION

The TMCMC algorithm is very-well suited for paral-
lel implementation in a computer cluster. Details of
the parallel implementation are given in Angelikopou-
los et al. (2012). Specifically, a parallel implemen-
tation algorithm is activated at every stage of the
TMCMC algorithm exploiting the large number of
short, variable length, chains that need to be gener-
ated starting from the leader samples determined from
the TMCMC algorithm at the particular stage. Static
and dynamic scheduling schemes can be conveniently
used to optimally distribute these chains in a multi-host
configuration of complete heterogeneous computer
workers. The static scheduling scheme distributes the
chains in the workers using a weighted round-robin
algorithm so that the number of likelihood evalua-
tions is arranged to be the same for each computer
worker.

The static scheduling scheme is computational effi-
cient when the computational time for a likelihood
evaluation is the same independently of the location
of sample in the parameter space as well as when
surrogate estimates are not activated. The dynamic
scheduling scheme is more general, ensuring a more
efficient balancing of the loads per computer worker
in the case of variable run time of likelihood function
evaluations and unknown number of surrogates acti-
vated during estimation. Specifically, each worker is
periodically interrogated at regular time intervals by
the master computer about its availability and samples
from TMCMC chains are submitted to the workers
on a first come first serve basis to perform the likeli-
hood function evaluations so that the idle time of the
multiple workers is minimized.

6 APPLICATION IN STRUCTURAL DYNAMICS

The computational efficiency and accuracy of the pro-
posed method is demonstrated by applying it to a
structural dynamics problem. Specifically, the method
is used to update the uncertainties in the parame-
ters of the FE model of the Metsovo bridge based on
simulated modal data.

6.1 Description of structure and model

A description of the bridge can be found in Papadim-
itriou and Papadioti (2013). A detailed FE model of
the bridge is created using 3-dimensional tetrahedron
quadratic Lagrange FEs and is shown in Figure 1. An
extra coarse mesh is chosen to predict the lowest 20
modal frequencies and mode shapes of the bridge. The
size of the elements in the extra coarse mesh is the
maximum possible one that can be considered, with
typical element length of the order of the thickness of
the deck cross-section. This model has 97,636 FEs and
562,101 DOFs.

6.2 FE model reduction using CMS

The CMS method for model updating presented in the
work by Papadimitriou and Papadioti (2013) is used
to significantly reduce the size of the FE model such
that the predictions of the required lowest 20 modes
are accurate. CMS techniques (Craig and Bampton
1965) divide the structure into components with mass
and stiffness matrices that are reduced, using fixed-
interface and constrained modes, to alleviate part of
the computational effort. However, direct application
of CMS technique at each TMCMC sampling point
requires the re-computation of the eigen-problem and
the interface constrained modes for each component.
This is a very time consuming operation and com-
putationally more expensive that solving directly the
original matrices for the eigenvalues and the eigenvec-
tors. For certain parameterization schemes for which
the mass and stiffness matrices of a component depend
linearly on only one of the free model parameters
to be updated, the full re-analyses of the component
eigen-problems are avoided. The eigenproperties and
the interface constrained modes can be computed as
a function of the model parameters directly from the
eigenproperties and the interface constrained modes
that correspond to a nominal value of the model
parameters. Details of the formulation are presented
in (Papadimitriou and Papadioti 2013). The end result
is that the reduced mass and stiffness matrices of
the structure for each re-analyses are obtained from
the reduced component mass and stiffness matrices
obtained for a nominal structure. This is an impor-
tant result which saves substantial computational effort
since it avoids (a) re-computing the fixed-interface and
constrained modes for each component, and (b) assem-
bling the reduced matrices from these components.
The formulation guarantees that the reduced system is
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Figure 1. Components of FE model of bridge.

based on the exact component modes for all values of
the model parameters.

6.3 Application and numerical results

Let ωc be the highest modal frequency that is of inter-
est in FE model updating. In this study the cut-off
frequency is selected to be the 20th modal frequency
(ωc = 4.55 Hz) of the nominal FE model. Following
CMS technique, the bridge is divided into nine com-
ponents as shown in Figure 1. This division introduces
8 interfaces as shown in the same figure. The modes
selected to be kept for each component have frequency
ωmax = ρωc, where the ρ values affect the computa-
tional efficiency and accuracy of the CMS technique.
The ρ value is chosen to be ρ = 8, resulting in a sub-
stantial reduction of model DOF by more than two
orders of magnitude. Specifically, the total number of
DOF is 3,586 (286 internal modes and 3,300 inter-
face DOFs) for all components. The highest error in
the estimation of the lowest twenty modal frequencies
is less than 0.01%. A further reduction in the num-
ber of generalized coordinates is achieved by retaining
only a fraction of the constrained interface modes with
frequency less than ωmax = νωc. Using ν = 200, an
order of magnitude reduction in the interface DOFs is
obtained with the kept modes to be 592 and the errors
in the estimates for the lowest 20 modal frequencies to
be less than 0.02%. It this thus evident that using CMS
a drastic reduction in the number of generalized coor-
dinates, without sacrificing in accuracy, is obtained
which can exceed three orders of magnitude in this
case.

The computational time needed to estimate the low-
est 20 modal properties using CMS with ρ = 8 and
ν = 200 is two orders of magnitude less than the time
required to solve the complete FE model. It is thus
obvious that CMS is expected to drastically reduce
the computational effort in Bayesian inverse modeling
without sacrificing in accuracy.

The FE model is parameterized using five param-
eters associated with the modulus of elasticity of one
or more structural components shown in Figure 1.
Specifically, the first two parameters θ1 and θ2 account
respectively for the modulus of elasticity of the pier
components 3 and 7 of the bridge. The parameter θ3

accounts for the modulus of elasticity of the compo-
nents 1 and 2 of the deck, the parameter θ4 accounts
for the components 4 and 5, while the parameter θ5
accounts for the components 6 and 8. The component
9 is not parameterized.The model parameters are intro-
duced to scale the nominal values of the properties that
they model so that the value of the parameters equal to
one corresponds to the nominal value of the FE model.

The estimation of the parameter values and their
uncertainties of the FE model is based on modal
frequencies and mode shapes. Simulated, noise con-
taminated, measured modal frequencies and mode
shapes are generated by adding a 1% and 3% Gaus-
sian noise to the modal frequencies and modeshape
components, predicted by the nominal non-reduced FE
models. 38 sensors are placed on the bridge to moni-
tor vertical and transverse accelerations.The measured
data contain the values of the ten lowest modal fre-
quencies and modeshapes. Details of the likelihood
function used and the form of the objective function (4)
are given in Christodoulou and Papadimitriou (2007).

The model updating is performed using the stochas-
tic simulation algorithm TMCMC with 1000 samples
per TMCMC stage (Ching and Chen 2007). The
number of FE model runs depends on the num-
ber of TMCMC stages which was estimated to be
19. The resulting number of FE model re-analyses
are 19,000. The parallelization features of TMCMC
(Angelikopoulos et al. 2012) were also exploited, tak-
ing advantage of the available four-core multi-threaded
computer unit to simultaneously run eight TMCMC
samples in parallel. For comparison purposes, the
computational effort for solving the eigenvalue prob-
lem of the original unreduced FE model is approxi-
mately 139 seconds. Multiplying this by the number
of 19,000 TMCMC samples and considering parallel
implementation in a four-core multi-threaded com-
puter unit, the total computational effort for the model
class is expected to be of the order 7 days. In contrast,
for the reduced-order model for ρ = 8 and ν = 200, the
computational demands for running the model class
are reduced to approximately 14 minutes. It is thus evi-
dent that a drastic reduction in computational effort for
performing the structural identification based on a set
of monitoring data is achieved from approximately 7
days for the unreduced model class to 14 minutes for
the reduced model class, without compromising the
predictive capabilities of the proposed parameter esti-
mation methodology. This results in a factor of over
700 reduction in computational effort.

The effectiveness of the surrogate estimates for use
with TMCMC algorithm is next demonstrated. The
surrogate estimate is performed at the measure of fit
level. The surrogate estimates are based on a second-
order kriging approximation. In order to quantify the
accuracy of the surrogate estimates, we introduce the
following measure in the parameter space. Let qi
be a vector with components qj,i that measure the
moment of the marginal distributions of the j-th model
parameter in the set θ, where the subscript i refers to
the i-th surrogate-based TMCMC run (s-TMCMC).
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Figure 2. Comparison of the confidence intervals for the
mean values as estimated from the TMCMC and s-TMCMC
algorithms for errors 0.01, 0.1 and 0.5.

Figure 3. Comparison of the confidence intervals for the
standard deviation values as estimated from the TMCMC and
s-TMCMC algorithms for errors 0.01, 0.1 and 0.5.

Herein, the terms q represents the mean μ or the stan-
dard deviation σ of the marginal distributions of a
model parameter θ. Due to the stochastic nature of
the TMCMC algorithm, a sufficiently large number of
s-TMCMC runs need to be performed to get a statis-
tical meaningful estimate for the moment q computed
from the s-TMCMC algorithm.

The confidence intervals of the estimated means
and standard deviations of the marginal distributions
of the model parameters using the s-TMCMC for var-
ious values of the errors s(θ) allowed for the kriging

estimates are shown in Figure 2 and 3, respectively,
and compared to the confidence intervals for the same
quantities estimated using the TMCMC without sur-
rogates. The results in this figure are computed for
50 TMCMC or 50 s-TMCMC independent runs. It is
seen that the results provided by the surrogate-based
s-TMCMC estimates match very well those given by
the regular TMCMC estimates for even high values of
the errors s(θ) allowed for the kriging approximation.

For large fractional errors of 10% and 50% corre-
sponding to values in the figures of s(θ) = 0.1 and 0.5,
respectively, the computational effort is deduced by 80
and 95%. This is approximately one order of magni-
tude reduction that can achieved by the integration of
the surrogate estimates in TMCMC algorithm.

Overall, using the model reduction, the surrogate
approximations and parallel implementation in a 4-
core multi-threaded computer, the 562,101 DOF finite
element model, requiring 19,000 model runs, can be
performed, depending on the allowed error in the sur-
rogate estimate, in 1 to 3 minutes instead of 7 days,
which constitutes a remarkable reduction of three to
four orders of magnitude in computational effort.

7 CONCLUSIONS

Stochastic simulation algorithms, such as theTMCMC
algorithm, used in Bayesian inverse modeling require
a large number of FE model simulation runs. For
large order computational models with hundred of
thousands or even million DOFs, the computational
demands involved in the TMCMC sampling algorithm
may be excessive. Drastic reductions can be achieved
using surrogate models and parallel implementation
of the TMCMC algorithm. Surrogate models are well
adapted to the TMCMC algorithm for significantly
reducing the number of full model runs required. An
adaptive kriging technique is effectively integrated
within the parallel multiple chain TMCMC algorithm,
resulting in substantial reduction of the number of
full system re-analyses, essentially speeding-up com-
putations by more than an order of magnitude. The
proposed kriging technique exploits the availability of
large number of multi-chain MCMC samples in the
local neighbor of a surrogate estimate. Parallel com-
puting algorithms are also very well suited to be used
with TMCMC algorithm to efficiently distribute the
computations in available multi-core CPUs.

Application of the framework to Bayesian inverse
modeling in structural dynamics using vibration mea-
surements was emphasized in this work. Recent devel-
opments in CMS techniques for parameter estimation,
exploiting certain parameterization schemes often
encountered in FE model updating, were shown to be
effective in drastically reducing the order of the struc-
tural models and thus the computational effort required
at the system level. Application of the framework on
the model updating of a bridge demonstrated a remark-
able reduction in computational time as high as four
orders of magnitude.
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